

BAADER PLANETARIUM Zur Sternwarte • D-82291 Mammendorf • Tel. +49 (0) 8145/8089-0 • Fax +49 (0) 8145/8089-105

Baader-Planetarium.com • kontakt@baader-planetarium.de • Celestron-Deutschland.de

Founded in 2006, **PlaneWave Instruments** is committed to providing observatory-class products for serious astronomers at an unprecedented value. Developed by PlaneWave, the CDK (Corrected Dall-Kirkham) is a revolutionary telescope, its optical system was designed to excel at imaging on large format CCD cameras while remaining an excellent instrument for visual use.

Created to meet the demands of both the serious imager and visual observer, the CDK is offered at an unprecedented price/performance ratio for a telescope of this quality and aperture. One advantage of the CDK design is its ease of collimation and achievable centering tolerance for a telescope of this class. This assures that the user will get the best possible performance out of the telescope. The end result is a telescope which is free from off-axis coma, offaxis astigmatism, and curvature of field, yielding a perfectly flat field all the way out to the edge of the largest CCD sensors available today. Today PlaneWave makes a full line of CDK and Ritchey-Chrétien (RC) telescopes as well as imaging and observatory class mounts to provide complete imaging systems for both individuals and industry.

TABLE OF CONTENTS

The Optical Design of CDK Astrographs.....

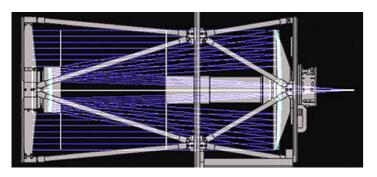
Telescopes (optics only)

CDK 12,5 Astrograph
CDK 14 Astrograph
CDK 17 Astrograph
CDK 20 Astrograph
CDK 24 Astrograph
Features for all CDK's / Accessories
Mounts (w/o optics)
L-Series Direct Drive Mounts
Observatory Telescopes (mount & optics)
CDK 350 Observatory Telescope System
CDK 400 Observatory Telescope System
CDK 400 Observatory Telescope System
CDK 400 Observatory Telescope System CDK 500 Observatory Telescope System
CDK 400 Observatory Telescope System CDK 500 Observatory Telescope System CDK 600 Observatory Telescope System
CDK 400 Observatory Telescope System CDK 500 Observatory Telescope System CDK 600 Observatory Telescope System CDK 700 Observatory Telescope System

6

CDK Optical Design

THE OPTICAL DESIGN OF CDK ASTROGRAPHS


-baader Janelarium

Shown on the example of CDK20 Astrograph

PlaneWave

INSTRUMENTS

The CDK [Corrected Dall-Kirkham] telescope is based on an optical design developed by Dave Rowe. The goal of the design is to make an affordable astrographic telescope with a large enough imaging plane to take advantage of the large format CCD cameras of today. Most telescope images degrade as you move off-axis from either coma, off-axis astigmatism, or field curvature. The CDK design suffers from none of these problems. The end result is a telescope which is free from off-axis coma, off-axis astigmatism, and curvature of field, yielding a perfectly flat field all the way out to the edge of a 52mm (respectively 70mm on most other CDK-optics) image circle. This means pinpoint stars from the center out to the corner of the field of view.

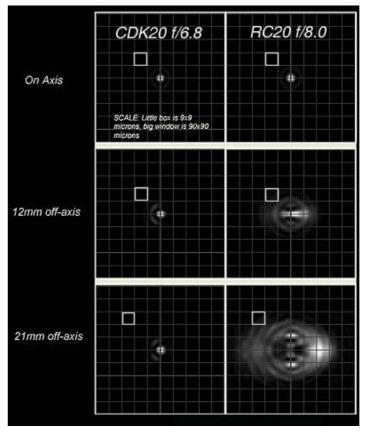
The design is a simple and elegant solution to the problems posed above. The CDK consists of three components:

- an ellipsoidal primary mirror,
- a spherical secondary mirror •
- and a lens group. •

All these components are optimized to work in concert in order to create superb pinpoint stars across the entire 52 to 70mm image plane.

OPTICAL PERFORMANCE

The following graphic shows two simulations showing the CDK's stunning performance. The first is a diffraction simulation and the second is a spot diagram. In the diffraction simulation the star images on axis and off-axis are nearly identical. In the spot diagram 21mm off-axis the spot size is an incredible 6 microns RMS diameter. For 26mm off-axis, a 52mm image circle, the RMS spot size is 11 microns. This means the stars across the entire focal plane are going to be pinpoints as small as atmospheric seeing will allow. Both of the simulations take into consideration a flat field, which is a more accurate representation of how the optics would perform on a flat CCD camera chip.


For visual use some amount of field curvature would be allowed since the eye is able to compensate for a curved field. The diffraction simulation was calculated at 585nm. The spot diagram was calculated at the RGB wavelength, repectively at 720-, 555- und 430nm. Many companies show spot diagrams in only one wavelength, however to evaluate chromatic performance multiple wavelengths are required.

COMPARISON: CDK VS. RITCHEY CHRÉTIEN

collimate. Aligning the hyperbolic secondary mirror's op-The simulation below compares the optical performance tical axis to the optical axis of the primary mirror is critiof the CDK design to the Ritchey Chrétien (RC) design. cal in the RC design, and the tolerances are unforgiving. The RC design was popularized as an astroimaging tele-The secondary mirror of the CDK design is spherical. It scope due to its use in many professional observatories. has no optical axis and so the centering tolerance of the Although very difficult and expensive to manufacture CDK secondary mirror is comparatively huge. With the and align, the RC is successful in eliminating many of help of some very simple tools, the CDK user will be able the problems that plaque many other designs, namely to set the secondary spacing, collimate the optics and off-axis coma. However the RC does nothing to elimibegin enjoying the full performance potential the instrunate the damaging effects of off-axis astigmatism and ment has to offer within a few minutes. field curvature.

The drastic difference in performance between the The CDK design tackles the off-axis coma problem by CDK and the RC is apparent. The biggest compointegrating a pair of correcting lenses into a two mirror nent that degrades the off-axis performance of the RC design. The beauty is that this design also corrects for is the defocus due to field curvature. In many diagrams astigmatism and field curvature. Because the lenses are shown by RC manufacturers, the diagrams look better relatively close to the focal plane, and because these than this because they are showing a curved field. This lenses work together as a doublet, there is no chromatic is fine for visual use because the eye can compensate aberration. The CDK offers a wide aberration-free, flat for some amount of curvature of field. But CCD arrays field of view that allows the user to take full advantage of are flat and so in order to evaluate the performance a the very large imaging chip cameras in the market place spot diagrams and/or diffraction simulations requires a flat field as shown. today.

Having an aberration free telescope design means noth-The small squares are 9x9 microns wide, the individual ing if the optics cannot be aligned properly. Many RC comparative images are 90 micrometers wide. The spot owners never get to take full advantage of their instrudiagrams were calculated for a wavelength of 585 nanoment's performance because the RC is very difficult to meters.

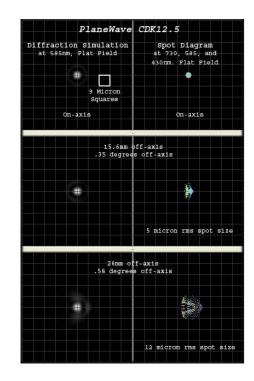
CDK Optical Design

PlaneWave INSTRUMENTS

Furthermore, please note: the CDK design is f / 6.8, the RC design is f / 8. This is not important for stars, but it can easily reduce the exposure time when photographing extended objects like nebulae.

52mm flat field

Usable field size of SBIG STX 16803


30mm flat field in compariso

Usable field size of SBIG STX 16803

INSTRUMENTS

OPTICAL SYSTEM

-baader planelarium CDK 12,5

Aperture	12.5 inch (318 mm)
Focal Length	2541 mm(100.04 inch)
Focal ratio	f/8
Central Obstruction	17,64% by surface area; 42% of the Primary Mirror Diameter
Back Focus from Mounting Surface	10.445 inch (265 mm)
Back Focus from racked-in Focuser	7.2 inch (183 mm)
Weight	48.5 lbs (22kg)
OTA Length	31 inch (787 mm)
Optical Performance	3.8 micron RMS at 13mm off-axis; 12.0 micron RMS at 26mm off-axis
UpperCage	Carbon Optical Tube
Lower Cage	Carbon Optical Tube
Optimal Field of View	52mm Image Circle

PRIMARY MIRROR

Optical Diameter	12.5 inch (318 mm)
Outer Diameter	13 inch (330 mm)
Shape	Prolate Ellipsoid
Material	Fused Silica
Coating	Enhanced Aluminum - 96%

SECONDARY MIRROR

Diameter	4.65 inch (118 mm)
Material	Fused Silica
Shape	Spherical
Coating	Enhanced Aluminum - 96%

Prices, further images and technical information in English and German on: *www.baader-planetarium.com/cdk12*

PLANEWAVE CDK 12,5 IS AVAILABLE IN THE FOLLOWING VERSIONS

WITH FUSED SILICA OPTICS #1323212Q

CDK 14

Aperture	14 inch (356 mm)
Focal Length	2563 mm(101 inch)
Focal ratio	f/7.2
Central Obstruction	23.5% by surface area; 48.5% by diameter
Back Focus from Mounting Surface	11.09 inch (282 mm)
Back Focus from racked-in Focuser	8,09 inch (206mm)
Weight	48 lbs (22 kg)
OTA Length	35 inch (889 mm)
Optical Performance	3.1 micron RMS at 13mm off-axis;6.0 micron RMS at 35mm off-axis
UpperCage	Carbon Fiber Truss
Lower Cage	Carbon Fiber Truss with Light Shroud
Optimal Field of View	70mm Image Circle

PRIMARY MIRROR

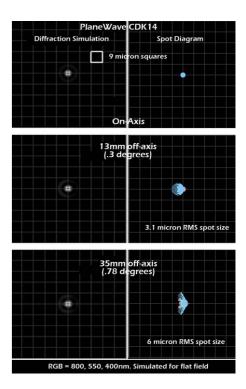
Optical Diameter	14 inches (355.6)
Outer Diameter	14.5 inches (368.3mm)
Shape	Prolate Ellipsoid
Material	Fused Silica
Coating	Enhanced Aluminum - 96%

SECONDARY MIRROR

Diameter	6.5 inch (165 mm)
Material	Fused Silica
Shape	Spherical
Coating	Enhanced Aluminum - 96%

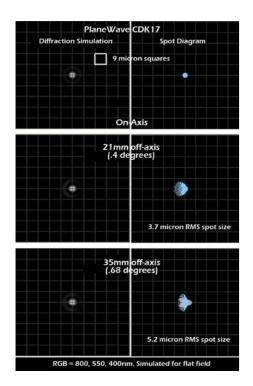
Prices, further images and technical information in English and German on: *www.baader-planetarium.com/cdk14*

PLANEWAVE CDK 14 IS AVAILABLE IN THE FOLLOWING VERSION


WITH FUSED SILICA OPTICS #1323214Q

PlaneWave CDK 12,5

PlaneWave CDK 14



INSTRUMENTS

OPTICAL SYSTEM

rbaader kanelarium **CDK 17**

Aperture	17 inch (432 mm)
Focal Length	2939 mm (115.71 inch)
Focal ratio	f/6.8
Central Obstruction	23.7% by surface area; 48.6% of the Primary Mirror Diameter
Back Focus from Mounting Surface	10.24 inch (260 mm)
Back Focus from racked-in Focuser	7.24 inch (184 mm)
Weight	106 lbs (48 kg)
OTA Length	42 inch (1067 mm)
Optical Performance	3.1 micron RMS at 13mm off-axis; 6.0 micron RMS at 35mm off-axis
UpperCage	Carbon Fiber Truss
Lower Cage	Carbon Fiber Truss and Light Shroud
Optimal Field of View	70mm Image Circle

PRIMARY MIRROR

Optical Diameter	17 inch (432 mm)
Outer Diameter	17.5 inch (445 mm)
Shape	Prolate Ellipsoid
Material	Fused Silica
Coating	Enhanced Aluminum - 96%

SECONDARY MIRROR

Diameter	7.48 inch (190 mm)
Material	Fused Silica
Shape	Spherical
Coating	Enhanced Aluminum - 96%

Prices, further images and technical information in English and German on: *www.baader-planetarium.com/cdk17*

PLANEWAVE CDK 17 IS AVAILABLE IN THE FOLLOWING VERSIONS

CDK 20

OPTICAL SYSTEM

Aperture	20 inch (508 mm)
Focal Length	3454 mm(135.98 inch)
Focal ratio	f/6.8
Central Obstruction	15.21% by surface area; 39% of the Primary Mirror Diameter
Back Focus from Mounting Surface	8.8 inch (223mm)
Back Focus from racked-in Focuser	5.8 inch (147 mm)
Weight	140 lbs (63.5 kg)
OTA Length	47 inch (1,194 mm)
Optical Performance	4.0 micron RMS at 13mm off-axis; 11.8 micron RMS at 26mm off-axis
UpperCage	Carbon Fiber Truss
Lower Cage	Carbon Fiber Truss with Light Shroud
Optimal Field of View	52mm Image Circle

PRIMARY MIRROR

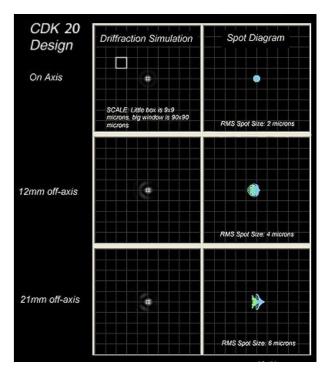
Optical Diameter	20 inch (508 mm)
Outer Diameter	20.5 inch (521 mm)
Shape	Prolate Ellipsoid
Material	Fused Silica
Coating	Enhanced Aluminum - 96%

SECONDARY MIRROR

Diameter	7.5 inch (191mm)
Material	Fused Silica
Shape	Spherical
Coating	Enhanced Aluminum - 96%

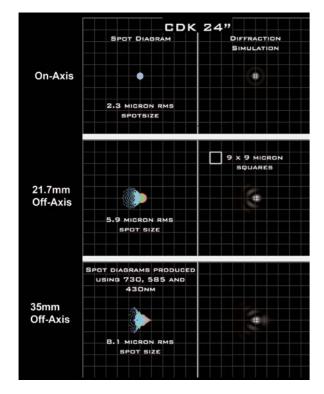
Prices, further images and technical information in English and German on: *www.baader-planetarium.com/cdk20*

PLANEWAVE CDK/RC20 IS AVAILABLE IN THE FOLLOWING VERSIONS



2001//200

PlaneWave CDK 17



INSTRUMENTS

OPTICAL SYSTEM

CDK 24

Aperture	24 inch (610 mm)
Focal Length	3962 mm (155.98 inch)
Focal ratio	f/6.5
Central Obstruction	22,09% by surface area; 47% of the Primary Mirror Diameter
Back Focus from Mounting Surface	14.1 inch (358 mm)
Back Focus from racked-in Focuser	5.81 inch (148 mm)
Weight	240 lbs (108.9 kg)
OTA Length	56 inch (1,422 mm)
Optical Performance	3.1 micron RMS at 13mm off-axis; 7.0 micron RMS at 42mm off-axis
UpperCage	Carbon Fiber Truss
Lower Cage	Carbon Fiber Truss with Aluminum Light Shroud
Optimal Field of View	70mm Image Circle

PRIMARY MIRROR

Optical Diameter	24 inch (610 mm)
Outer Diameter	24.5 inch (622 mm)
Shape	Prolate Ellipsoid
Material	Fused Silica
Coating	Enhanced Aluminum - 96%

SECONDARY MIRROR

Diameter	9.45 inch (240 mm)
Material	Fused Silica
Shape	Spherical
Coating	Enhanced Aluminum - 96%

Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk24

PLANEWAVE CDK/RC24 IS AVAILABLE IN THE FOLLOWING VERSIONS

WITH **FUSED SILICA OPTICS** #1323224Q

Features & Accessories

STANDARD FEATURES FOR ALL CDK TELESCOPES

COOLING FANS - Three cooling fans blow air inside the back of the telescope. Internal diverting fans circulate air flow behind the mirror for even cooling to help the telescope reach thermal equilibrium quickly. The fans are controlled with PWI PC software with the optional Electronic Focus Accessory (EFA Kit).

CARBON FIBER TRUSS DESIGN - Rigid and lightweight. Minimizes thermal expansion which causes focus shift with changes in temperature.

DELTA-T READY – for added dew prevention, the CDK's are internally wired with polyimide film pads and temperature sensors, ready to be controlled with the optional Delta-T controller.

DOVETAIL EXPANSION JOINT - allows for the difference in thermal expansion between carbon fiber and aluminum. The expansion joint allows the aluminum dovetail to expand and contract without stressing the carbon fiber lower truss.

RECOMMENDED ACCESSORIES

DELTA-T HEATER (CDK 12,5: #1329112 / 14: #1329110 / 17: #1329117 / 20: #1329120 / 24: #1329124)

- have Full Control of Primary and Secondary Heater using PlaneWave Interface (PWI 3) Software
- Monitor current temperature of primary mirror, secondary mirror and surrounding ambient temperature
- Automatically maintains mirror temperature set point as outside temperature changes
- Displays real time graph of all temperature sensors

IRF 90 – INTEGRATED ROTATING FOCUSER (#1329070)

Large capacity Integrated Focuser and Rotator. The Focuser is capable of lifting 40 lbs (18 kg) with a range 30 mm (30000 microns). It has a 90mm aperture with a range of 365 degrees with hardstops to elliminate any chance of cord wrap, The IRF90 is compatable with CDK14 - CDK700. It requires a standard Electronic Focuser Assembly (EFA-Kit) and the software PlaneWave Interface and ASCOM drivers.

3.5" HEDRICK FOCUSER (#1329050)

Heavy duty no-slip focuser capable of handling an imaging payload of up to 20lbs (9,1 kg). The focus tube runs on 5 bearings and is driven by a leadscrew so there is no chance of slipping. Focus may be automated through a computer using PlaneWave's EFA Kit add-on. The focuser comes with pre-installed motor that can be controlled with the EFA hand control or PWI PC software. The draw tube travel is 1.3 inch.

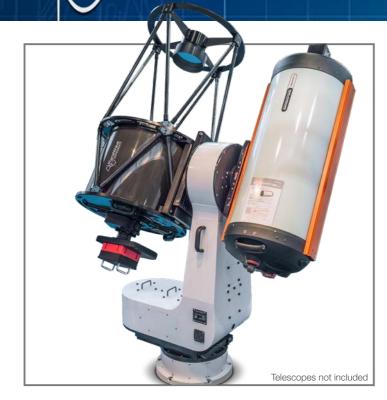
EFA KIT (ELECTRONIC FOCUS ACCESSORY)

(CDK 12.5; #1329020 / 14; #1329020 / 17; #1329024 / 20; #1329020 / 24; #1329024) The EFA Kit automates focusing (on optional Hedrick focuser), monitors temperature (on optional Delta T Dew Heater), and controls fans built-in to CDK telescopes. The EFA control box can be mounted to the back plate of any CDK telescope. The EFA Kit plugs into the temperature sensors and fan control wires that come standard with each telescope. A Hand Control is provided to control a optional Focuser or Rotator when standing at the eyepiece. The EFA kit comes with PlaneWave Interface (PWI), a software package that controls all external devices from a PC. All the cable are provided to attach the EFA kit to a PC. The EFA kit is ASCOM compatible.

PlaneWave CDK 24

General Features / Recommended Accessories

PlaneWave INSTRUMENTS



INSTRUMENTS

CONTROL SYSTEM

Control System Elec- tronics	PlaneWave Interface dual axis telescope control
Software	PlaneWave Interface (PWI4). Incorporates PointXP mount modeling software by Dave Rowe All ASCOM compatible.
Homing Sensors	Home position sensors are included allowing the mount can find its home position on power up. (L-500)
Slew speeds	20 degrees per second (standard); 50 degrees per second (maximum), both axes
Power requirements	Accepts 120 VAC. Supplied with 12VDC 15A Regulated Power Adapter (L-500)

MOUNT SYSTEM

rbaader kanelarium

L-Mount

Mount type	Alt-Az or Equatorial configuration
Mount weight	L-350: 110 lbs (50 kg) L-500: 257 lbs (100 kg) L-600: 338 lbs (153 kg)
Payload Capacity (kg)	L-350: 100 lbs (45 kg) L-500: 200 lbs (91 kg) L-600: 300 lbs (136 kg)
Latitude range	0 to 90 degrees, Northern and Southern hemispheres
Cable management	Equipment cables can be wired through mount

MOTION CONTROL

	Industrial grade brushless motor control system and built in electronics
	Azimuth and Altitude: Direct Drive 3 Phase Axial-Flux Torque Motors)
	152mm disk built into the azimuth and altitude axes with stainless steel encoder on the circumference with reader yields 18,880,000 counts per revolution of the telescope. This translates to about 0.069 arcsecond resolution.
•	Approximately 20 ft-lbs continuous; 50 ft-lbs peak

SYSTEM PERFORMANCE

Pointing accuracy	<10 arcseconds RMS with PointXP Model
Pointing precision	2 arcsecond
Tracking accuracy	< .3 arcsecond error over 5 minute period
System natural fre- quency	10 Hz or greater

Prices, further images and technical information in English and German on: www.baader-planetarium.com/l-mount

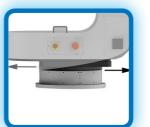
PLANEWAVE *L-MOUNT* IS AVAILABLE IN THE FOLLOWING VERSIONS

L-350 DIRECT DRIVE MOUNT PAYLOAD: 100 LBS (45 KG) #1321102

L-600 DIRECT DRIVE MOUNT
PAYLOAD: 300 LBS (136 KG) #1321101
#1321101

PLANEWAVE L-SERIES DIRECT DRIVE MOUNT

The L-Series combines versatility, simplicity and affordability by combining all the technology of our Observatory class telescopes into a compact stand-alone mount. In its Alt/Az configuration it is considerably more compact than its equatorial counterpart, allowing a larger telescope to fit in a smaller enclosure. The mass it takes to make a rigid alt/az mount is substantially less, leading to cost savings. Unlike German Equatorial mounts, there are no meridian flips to deal with, and no large protruding counterweights to create a dangerous hazard in a public observatory. Alt/Az is more intuitive to use and no polar alignment is needed. Besides, it is the way the pros do it!


L-SERIES SPECIAL FEATURES

target acquisition time.

the outside of the fork arm. Optional dovetail clamp required.

ance whether in Alt-Az or Equatorial configuration.

PlaneWave L-Mount Features

PlaneWave L-Mount

INCREDIBLE SLEW SPEED – The direct drive motors can move the telescope at speeds up to 50 degrees per second for tracking satellites or just to minimize

DUAL MOUNTING BRACKET – PlaneWave style mounting bracket to hold CDK17/20 onto inside of fork arm with additional option of mounting a scope on

AZIMUTH DOVETAIL BALANCE SYSTEM - For precise center of gravity bal-

THROUGH THE MOUNT CABLING – Access panels in the fork arm and azimuth axis allow for camera equipment cabling through the inside of the mount.

DIRECT DRIVE MOTORS AND ENCODERS – Direct Drive motors mean there are no gears to cause backlash and periodic error. With high-resolution encoders providing the feedback for the direct drive motors, not only will the telescope track without periodic error or have any backlash at all, but the mount will be able to counter against wind gusts. The direct drive motors can move the telescope at incredible speeds for tracking satellites or just to minimize target acquisition time.

CDK FEATURES:

see CDK 14 (p. 7) and Standard Features for all CDK's (p. 11)

MOUNT FEATURES: see L-Mount Special Features (p. 13)

OBSERVATORY TELESCOPE (MOUNT & OPTICS)

CDK 350

Set consisting of:

rbaader planelarium

• CDK14, 14 inch (0.35 m) f/7.2 Dall-Kirkham As-Corrected trograph. The telescope features 3 cooling fans ejecting air from the back of the telescope. More Information on page 7

- L-350 Direct Drive Mount, with 100 lbs (45 kg) loading capacity. Incredible slew speed, dual-mountoptions, Azimuth doveing tail balance system, through the mount cabeling, Direct-Drive motors/encoders and much more. More Information on pages 12/13
- Optional: IRF 90 Integrated rotating focuser. Large capacity Integrated Focuser and Rotator. The Focuser is capable of lifting 40 lbs (18 kg) with a range 30 mm (30000 microns) More Information on page 11
- Optional: EFA Kit (Electronic Focus Accessory). This Kit automates focusing (on optional Hedrick focuser), monitors temperature (on optional Delta T Dew Heater), and controls fans built-in to CDK telescopes. More Information on page 11

Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk350

PLANEWAVE CDK 350 IS AVAILABLE IN THE FOLLOWING VERSION

OBSERVATORY TELESCOPE (MOUNT & OPTICS)

Set consisting of:

• CDK17, 17" (0.43 m) f/6.5 Corrected Dall-Kirkham Astrograph. The telescopehas a dual carbon-fiber truss design, with 3 cooling fans ejecting air from the back of the telescope, and 4 fans blow-

CDK 400

ing across the boundary layer of the mirror's surface More Information on page 8

• L-500 Direct Drive Mount, with 200 lbs (91 kg) loading capacity. Incredible slew speed, dual-mounting options, Azimuth dovetail balance system, through the mount cabeling, Direct-Drive motors/encoders and much more. More Information on pages 12/13

- Optional: IRF 90 Integrated rotating focuser. Large capacity Integrated Focuser and Rotator. The Focuser is capable of lifting 40 lbs (18 kg) with a range 30 mm (30000 microns) More Information on page 11
- Optional: EFA Kit (Electronic Focus Accessory). This Kit automates focusing (on optional Hedrick focuser), monitors temperature (on optional Delta T Dew Heater), and controls fans built-in to CDK telescopes More Information on page 11

Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk400

PLANEWAVE CDK 400 IS AVAILABLE IN THE FOLLOWING VERSION

WITH **FUSED SILICA OPTICS** #1323240Q

CDK FEATURES: see CDK 17 (p. 8) and Standard Features for all CDK's (p. 11)

MOUNT FEATURES: see L-Mount Special Features (p. 13)

CDK FEATURES:

see CDK 20 (p. 9) and Standard Features for all CDK's (p. 11)

MOUNT FEATURES: see L-Mount Special Features (p. 13)

OBSERVATORY TELESCOPE (MOUNT & OPTICS)

CDK 500

Set consisting of:

- CDK20, 20 inch (0.51 m) f/6.8 Corrected Dall-Kirkham Astrograph. has a dual carbon-fiber truss design, with 3 cooling fans ejecting air from the back of the telescope. More Information on page 9
- L-500 Direct Drive Mount, with 200 lbs (91 kg) loading capacity. Incredible slew speed, dual-mountoptions, Azimuth doveing tail balance system, through the mount cabeling, Direct-Drive motors/encoders and much more. More Information on pages 12/13
- Optional: IRF 90 Integrated rotating focuser. Large capacity Integrated Focuser and Rotator. The Focuser is capable of lifting 40 lbs (18 kg) with a range 30 mm (30000 microns) More Information on page 11
- Optional: EFA Kit (Electronic Focus Accessory). This Kit automates focusing (on optional Hedrick focuser), monitors temperature (on optional Delta T Dew Heater), and controls fans built-in to CDK telescopes. More Information on page 11

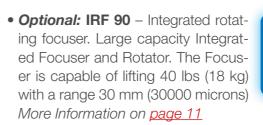
Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk500

PLANEWAVE CDK 500 IS AVAILABLE IN THE FOLLOWING VERSIONS

WITH **FUSED SILICA OPTICS** #1323250Q

OBSERVATORY TELESCOPE (MOUNT & OPTICS)

Set consisting of:


ing

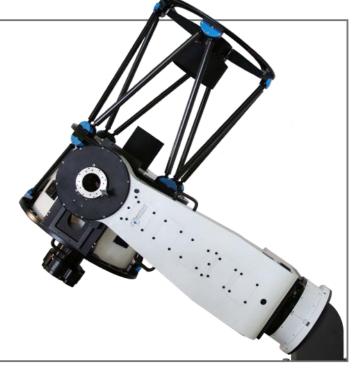
• CDK24, 24" (0.61 m) f/6.5 Corrected Dall-Kirkham Astrograph. The telescope has a dual truss design, with 3 cooling fans for the back of the primary mirror and 4 fans for the front surface of the primary mirror. More Information on page 10

CDK 600

• L-600 Direct Drive Mount. with 300 lbs (136 kg) loading capacity. Incredible slew speed, dual-mountoptions, Azimuth dovetail balance system, through the mount cabeling, Direct-Drive motors/encoders and much more. More Information on pages 12/13

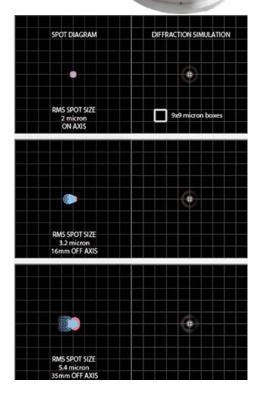
• Optional: EFA Kit (Electronic Focus Accessory). This Kit automates focusing (on optional Hedrick focuser), monitors temperature (on optional Delta T Dew Heater), and controls fans built-in to CDK telescopes More Information on page 11

Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk600


PLANEWAVE CDK 600 IS AVAILABLE IN THE FOLLOWING VERSIONS

PlaneWave CDK 500

PlaneWave CDK 600


CDK FEATURES: see CDK 24 (p. 10) and Standard Features for all CDK's (p. 11)

MOUNT FEATURES: see L-Mount Special Features (p. 13)

OPTICAL SYSTEM

CDK 700

Aperture	27.56 inch (700 mm)
Focal Length	4540 mm
Focal ratio	6.5
Central Obstruction	47% of the Primary Mirror Diameter
Back Focus from Mounting Surface	309 mm (12.2 inch)
Weight	1,200 lbs (544 kg)
OTA Tube	Dual truss structure with Nasmyth focus
Dimensions	93.73" H x 43.25" W x 39" D
Focus Position	Nasmyth Focus
Fully Baffled Field	60 mm
Image Scale	22 microns per arcsecond
Optimal Field of View	70 mm (0.86 degrees)

MECHANICAL STRUCTURE

•	Single piece U shaped fork arm assembly for maximum stiffness
Azimuth Bearing	20 inch diameter thrust bearing
Altitude Bearing	2 x 8.5 inch OD ball bearings
Optical Tube	Dual truss structure with Nasmyth focus

SYSTEM PERFORMANCE

Pointing Accuracy	10 arcsecond RMS with PointXP Model	
Pointing Precision	2 arcsecond	
Tracking Accuracy	<1 arcsecond error over 10 minute period	
System Natural Frequency	10 Hz or greater	
	3 microns of peak to peak error at 35 mm off-axis over 1 hour of tracking (18 arc sec)	

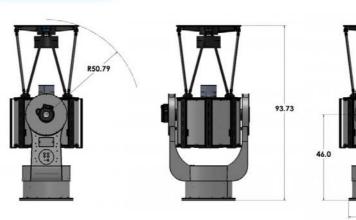
Prices, further images and technical information in English and German on: www.baader-planetarium.com/cdk700

PLANEWAVE CDK 700 IS AVAILABLE IN THE FOLLOWING VERSIONS

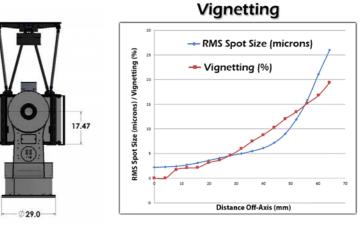
0.7 METER OBSERVATORY TELESCOPE-SYSTEM

The CDK700 is a complete observatory class telescope and direct drive alt-azimuth mounting system, designed and engineered by PlaneWave. With a 70mm image circle, the CDK700 is designed to excel at imaging on large format CCD cameras. The optical system utilizes a Nasmyth focus through both altitude bearings allowing your camera or eyepiece to remain at a fixed height while holding heavy instruments without needing to rebalance the optical tube assembly. Instrumentation can be installed on both sides of the fork mount and easily accessed using the included rotating tertiary mirror system. With direct drive motors, high resolution encoders and zero backlash or periodic error the CDK700 sets a new standard for small observatory telescopes.

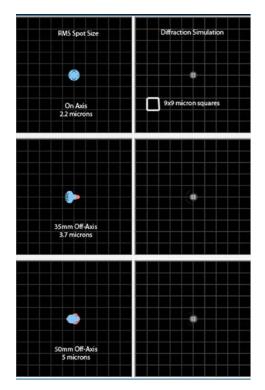
CDK 700 SPECIAL FEATURES


NASMYTH FOCUS – Dual Nasmyth Focus along the altitude axis eliminates balancing issues as you change out equipment. Eyepieces remain at a constant wheelchair-accessible height, greatly simplifying access to the telescope for public observatories. Includes the IRF90 field de-rotator/focuser which de-rotates the field and allows for long expousure Alt-Az tracking.

ROTATING TERTIARY MIRROR - The CDK700 includes an integrated rotator for the tertiary mirror, with magnetic locks to position the mirror precisely for either Nasmyth focus position. The rotator can move from one port to the other in under 10 seconds, allowing observers to easily transition between imaging and visual use.


DIRECT DRIVE MOTORS AND ENCODERS – Direct Drive motors mean there are no gears to cause backlash and periodic error. With high-resolution encoders providing the feedback for the direct drive motors, not only will the telescope track without periodic error or have any backlash at all, but the mount will be able to counter against wind gusts. The direct drive motors can move the telescope at incredible speeds for tracking satellites or just to minimize target acquisition time.

PlaneWave CDK 700 Features


PlaneWave CDK 700

OPTICAL SYSTEM

PW1000

Aperture	1000 mm (39.37inch)	
Focal Length	6000 mm	
Focal ratio	f/6	
Central Obstruction	47% of the Primary Mirror Diameter	
Back Focus from de-rotator	373 mm (14.7 inches)	
Weight	2600 lbs lbs (1180 kg)	
OTA Tube	Dual truss structure with Nasmyth focus	
Dimensions	135" H x 72" W x 45"	
Focus Position	Dual Nasmyth Focus Ports	
Image Scale	29 microns per arcsecond at F/6	
Optimal Field of View	100 mm (1.0 degrees)	
Optimal Field of View	70 mm (0.86 degrees)	

MECHANICAL STRUCTURE

Fork Assembly	Space Frame Steel Truss	
Fork Base	Welded stainless steel torsion box	
Azimuth Bearing	Dual 11.125 inch tapered roller bearings	
-	Three 9.5 inch 4 way loaded ball bearings (two pre-loaded on motor side and one on non motor side)	
Optical Tube	Dual truss structure with Nasmyth focus	
Instrument Payload	300 lbs (150 ft-lbs) - mounted on the field de-rotator plate	

SYSTEM PERFORMANCE

	Better than 10 arcsecond RMS with PointXP Model	
Pointing Precision	2 arcsecond	
	<1 arcsecond error over 10 minute period	
Natural Frequency	10 Hz or greater	
	<3 microns of peak to peak error at 35mm off-axis over 1 hour of tracking (18 arc sec)	

Prices, further images and technical information in English and German on: www.baader-planetarium.com/pw1000

PLANEWAVE PW1000 IS AVAILABLE IN THE FOLLOWING VERSIONS

w. FUSED SILICA **OPTICS** #1323300Q

1 METER OBSERVATORY TELESCOPE-SYSTEM

The PW1000 is a complete 1-meter observatory class telescope and direct drive alt-azimuth mounting system, designed and engineered by PlaneWave. With a diffraction limited 100mm image circle, the PW1000 is designed to excel at imaging on the largest format CCD cameras available today. Light-weighted optics are made of zero expansion fused silica materials for excellent thermal stability and maximum throughput. The optical system utilizes a Nasmyth focus through both altitude bearings allowing instrumentation to be installed on both sides of the fork mount that is easily accessed using the included rotating tertiary mirror system. With direct drive motors, high resolution encoders and zero backlash or periodic error the PW1000 sets a new standard in 1-meter class observatory telescopes.

PW1000 SPECIAL FEATURES

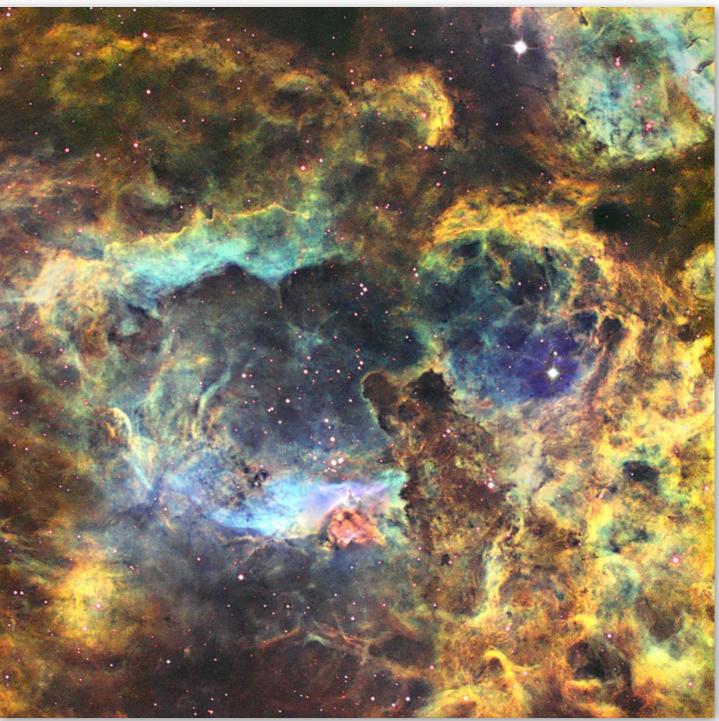
DUAL NASMYTH FOCUS PORTS - Dual Nasmyth Focus along the altitude axis eliminates balancing issues when you change equipment. Eyepieces remain at a constant wheelchair-accessible height, greatly simplifying access to the telescope for public observatories. The computer-controlled tertiary mirror allows either Nasmyth port to be selected in just a few seconds, allowing observers to easily transition between imaging and visual use, or other instrumentation.

ROTATING TERTIARY MIRROR - The CDK1000 includes an integrated rotator for the tertiary mirror, with magnetic locks to position the mirror precisely for either Nasmyth focus position. The rotator can move from one port to the other in less than 10 seconds, allowing observers to easily transition between imaging and visual use.

DIRECT DRIVE MOTORS AND ENCODERS - Direct Drive motors and absolute on-axis encoders eliminate the need for reduction gears, thereby eliminating backlash and periodic error. With high-resolution encoders providing the feedback for the direct drive motors, not only will the telescope track without periodic error and backlash, the mount will also counter wind gusts with precise servo feedback. The direct drive motors can move the telescope at incredible speeds for tracking satellites or just to minimize target acquisition time

LIGHT-WEIGHT FUSED SILICA OPTICS - Fused Silica has a coefficient of thermal expansion six times lower than Borosilicate (Pyrex) glass, which means that while it cools down, fused silica preserves its shape to a high degree of accuracy. This translates into consistent optical performance and unchanging focus over temperature changes.

AUTOMATED PRIMARY MIRROR SHUTTER – Protects the primary mirror from unwanted dust and moisture with this integrated four shutter automated system, fully controllable with PlaneWave's PWI software.


PlaneWave PW1000

PlaneWave PW1000 Features

Author	© W. Paech, F. Hofmann
Object	Sculptor Galaxy (NGC 253)
Telescope	PlaneWave CDK17 w. Televue 0.8x reducer
Location	Namibia, Africa
CCD	ALCCD 12
Exposures	15 x 600s

	Author	© John Ebersole
	Object	Lobster Nebula (NC
	Telescope	PlaneWave CDK70
	Location	iTelescope, Siding
	CCD	FLI PLO 9000
	Filters	Astrodon 6nm Ha,
	Exposures	Ha – 100 min 1x1,

Customer Images

Customer Images

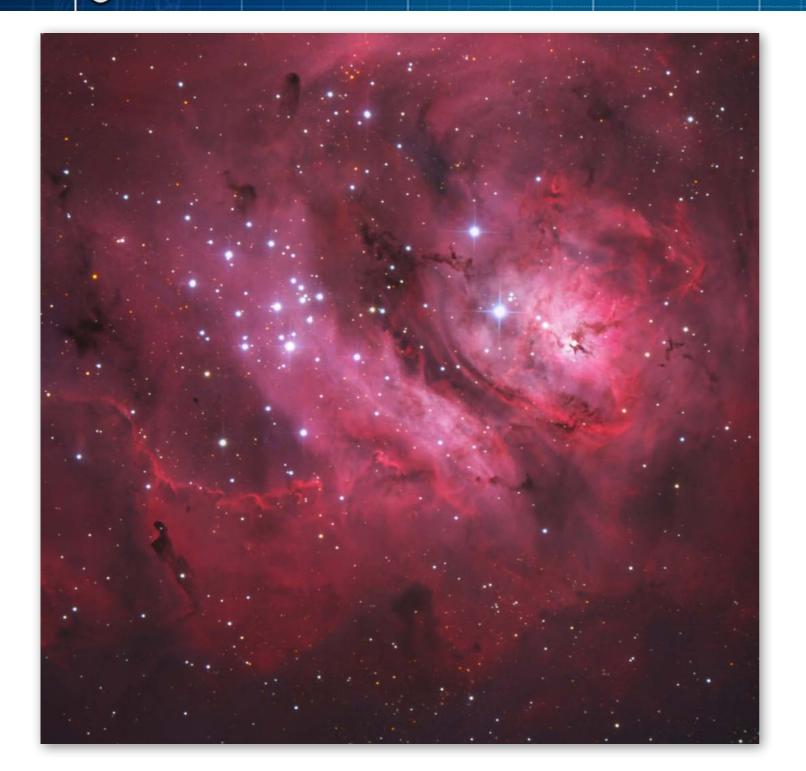
GC 6357) in HST Narrowband Palette
00
Spring, Australia
OIII, SII
, OIII – 120 min 2x2, SII – 80 min 2x2

Author	© Christoph Kaltseis
Object	Crescent Nebula (NGC 6888)
Telescope	PlaneWave CDK14
Location	Sarleinsbach, Upper Austria, 562mm
CCD	Nikon D810A, 0.39" resolution per Pixel
Exposures	16x480s @ ISO800 in RGB

Author © Bill Snyder
Object Wizard Nebula (NG
Telescope PlaneWave CDK17
Location SRO Sierra Remot
CCD SBIG STXL 11002
Filters Astrodon 3nm Ha,
Exposures Ha – 10 hrs, OIII –

Customer Images

Customer Images

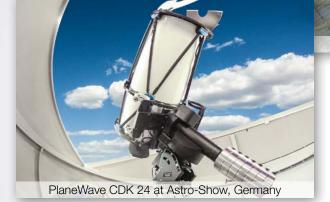


GC 7380)
7
te Observatories
! with AO-X
, OIII, SII
5.5 hrs, SII – 7.5 hrs. 30 min subs

Author	© W. Paech, F. Hofmann	
Object	Lagoon Nebula (M8)	
Telescope	PlaneWave CDK12,5 w. Televue 0.8x reducer	
Location	Namibia, Africa	
CCD	ALCCD 12	
Exposures	12 x 600s	

Author	© Sebastian Voltm
Object	Iris Nebula (NGC 7
Telescope	PlaneWave CDK12
Location	Spicheren, France
CCD	ST-2000XM
Filters	Baader RGB

Customer Images


ner

7023)		
2,5		
)		
	• • • • • • • • • • • • • • • • • • •	 • • • • • • • •

Comparison CDK700 / PW-1000

PlaneWave CDK 17 in Sharjah, UAE

Baader Planetarium specializes in erecting turnkey observatories utilizing mainly PlaneWave astrographic and infrared telescopes with professional CCD-camera equipment.

OFFICIAL PLANEWAVE EU-DISTRIBUTOR:

Baader TFS (Telescope Flap System)

All technical specifications and instructions contained in this brochure are given without warranty of any kind and are subject to technical changes. We reserve the right of errors. © 2018 Baader Planetarium GmbH, Mammendorf. Reproduction, even partial, regardless of the medium only with written permission.

S