Celestron CGX mount in combination with StarAid Revolution as guiding cam

Baader Apo 95/580 CaF2 Travel Companion on a Celestron CGX mount with StarAid Revolution as autoguider and Baader Multi-Purpose Vario Finder 10x60

Baader Apo 95/580 CaF2 Travel Companion on a Celestron CGX mount with StarAid Revolution as autoguider and Baader Multi-Purpose Vario Finder 10x60

The CGX: A Versatile Mount For Everyone!

Recently I was able to work with the Celestron CGX, the Baader Apo 95/560 Travel Companion, the Nikon D810A and the StarAid Revolution as guiding system for the first time. Once again the results proved how much you can get out of a good system if you take some time to tweak the settings a little bit instead of simply working with the factory settings of the software without taking a closer look at them.

Celestron CGX Montierung

Celestron CGX mount (#823003, € 2432,10)

To get straight to the point: I'm really excited about what the CGX delivered last night!

For polar alignment, I used the star Regulus and the integrated AllStar Polar Alignment (ASPA) system of the CGX. My alignment routine only consisted of a 2-star alignment, with Regulus added as another calibration star. Then I let the mount slew across 2/3 of the sky to the star Vega. The CGX placed Vega in the middle of the field of view of the APO 95 and the Z6, with less than 5% deviation!

That's AMAZING, because it means that I don't need an additional high-precision goto, even with small sensors! In any case, high-precision goto is only intended for those times when the mount is badly polar aligned, anyway.
And the tracking accuracy? If the CGX is properly aligned using the CGX's ASPA routine, it works really well. Up to 30 seconds were possible without guiding. It's the same as with a 10Micron mount without the additional pointing model: balance the mounts axles, set it up with caution and perform a good - very good - polar alignment, then the CGX is TOP!

Celestron CGX mount in measurement mode

Celestron CGX mount in measurement mode Celestron CGX mount in measurement mode Celestron CGX mount in measurement modeCelestron CGX mount in measurement mode

Excuse me if I have said this before, but again and again I hear and read – not only in the forums – that it does not matter if the mount is perfectly polar aligned, or if it is perfectly balanced, etc... this madness must be put to an end! Instead of two vectors (RA + DEC) or ideally one (with an ideal setup it should only be RA) to represent the tracking, we have to deal with four motion vectors at once (for RA + DEC + the drift in both Axes in plus and minus), plus the field of view rotation! This is still inconspicuous visually (and the CGX compensates for these deviations at least when slewing to each new object), but when tracking an object with a camera, this will harm the quality of the result! (Sorry, but that's my personal opinion – and nobody can tell me anything else; I've already had my discussions about this.)

Of course, I used an autoguider to do serious astrophotography, in this case the StarAid Revolution. With it, there were still round (or better: pin-point) stars even after 600 seconds – that's very good. The system just ran smoothly: the routines in the CGX are very practical and the gearbox (belt drive) implements the guiding pulses in real time.

The StarAid was only connected to a power supply and the guiding port; it is a real standalone autoguider without a laptop. The autoguiding starts automatically as soon as the StarAid is powered up. By the way, the StarAid Revolution is not only a standalone autoguider. It combines automatic polar adjustment and plate solving (in just 2 seconds) in a light, only 8 cm large body. This all-in-one astrophotography device replaces a specialised guiding camera and a laptop with various programs for guiding and polar alignment, and it can solve the biggest problems related to astrophotography – initialization and polar alignment are done with the smartphone, then it runs autonomously!

After what feels like 1000 years of experience with guiding I can only say again and again: "Guiding must be adapted to seeing!" This principle has been confirmed once again, as the CGX reacts very accurately to every control command.

That means: The StarAid guides the CGX in a direct manner. Everything is almost 1: 1 in effect.

That is why the guiding rate of the CGX has to be adapted to the seeing. In the case of the CGX, this is possible separately for both the RA and the DEC axis, as a percentage of the star speed. The standard value of the CGX is 85% of the siderial speed. If the seeing is bad, this will cause pendulum movements, but everything is still within tolerance. But if I reduce the rate to 50% – I even went as low as 35% per axis (the seeing was really ugh!) – the correction is only 0.5 PIXEL of the guider. The RA axis was in teeny-tiny overbalance towards the counterweight. Hence the movement from plus to minus in the RA axis. (I call it the "I'm already gone away" error.)

And here is the result:

IC1318 with Baader Apo 95

IC1318 and the 2.2mag star Sadr in RGB with Baader APO 95 and Nikon D810A, Celestron CGX mount and StarAID StarAid Revolution Standalone Autoguiding, 22x 360sec (132min) under good conditions

M51 / Baader APO 95 / Celestron CGX / StarAID / D810A

M51 with Baader APO 95 and the Nikon D810A; Celestron CGX mount and StarAID StarAid Revolution standalone autoguiding at 600s and in original resolution

After these experiences I am really looking forward to something else: The combination of RASA 8 + CGX is a really hot product, because I already got round stars on the APO95 / 560 for about 30sec without auto guiding ... and with guiding, hour-long narrowband imaging sessions are easy! For remote operation, the CGX has another great feature when it is operated through ASCOM and Celestron's CPWI control software: power failures are no longer a problem! The mount is then simply moved back to the home position, the last alignment is called up, and everything will be fine:-)

About the author

Christoph Kaltseis

Christoph Kaltseis is not only an Adobe Photoshop specialist and as Nikon Professional touring for Nikon, but also an experienced astrophotographer. He is one of the founders of the Central European DeepSky Imaging Conference (www.cedic.at), which is held every two years in Linz since 2009.

In addition to his various projects, Christoph has developed an innovative image sharpening process called APF-R (Absolute Point of Focus)in recent years. The procedure is not always the same, but is adapted to the combination of lens and camera. Therefore, a flexible method was necessary to achieve the desired results.

In his career as an astrophotographer Christoph has also created several APODs (NASA Astronomy Picture of the Day), e.g. the APF-R-processed image of the M33 Galaxy or the Heart of the Orion Nebula (M42).

View all posts from Christoph Kaltseis
Leave a Reply